skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arroyo, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. From the general inverse theory of periodic Jacobi matrices, it is known that a periodic Jacobi matrix of minimal period p≥2 may have at most p−2 closed spectral gaps. We discuss the maximal number of closed gaps for one-dimensional periodic discrete Schrödinger operators of period p. We prove nontrivial upper and lower bounds on this quantity for large p and compute it exactly for p≤6. Among our results, we show that a discrete Schrödinger operator of period four or five may have at most a single closed gap, and we characterize exactly which potentials may exhibit a closed gap. For period six, we show that at most two gaps may close. In all cases in which the maximal number of closed gaps is computed, it is seen to be strictly smaller than p−2, the bound guaranteed by the inverse theory. We also discuss similar results for purely off-diagonal Jacobi matrices. 
    more » « less